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We report a theoretical study of the escape rates of the Hénon-Heiles system above threshold. An analytic
formula for the escape rate as a function of energy is presented. We also simulated the escaping process by
following the motions of a large number of particles. Two algorithms are employed to solve the equations of
motion. One is the Runge-Kutta-Fehlberg method, and another is a recently proposed fourth order symplectic
method. Our simulations show the escape of Hénon-Heiles system follows exponential laws. We extracted the
escape rates from the time dependence of particle numbers in the Hénon-Heiles potential. The extracted escape
rates agree with the analytic result. Close to threshold we find the rate ���E� can be written as a series
expansion, the first term of this expansion is 4

3�E.
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I. INTRODUCTION AND MODEL

The scaling laws are directly associated with the classical
dynamics of the systems under study. Bauer and Bertsch �1�
studied the decay laws of chaotic and nonchaotic billiards
with windows. They found the number of particles remaining
inside chaotic billiards decreases exponentially, but non-
chaotic billiards decay according to power laws. The results
suggest that the exponential law is connected to the chaotic
dynamics. However, an exception is the circular billiard,
which is integrable but decays exponentially �2�. Experimen-
tal studies on the decay laws of an elbow cavity using mi-
crowaves have also been reported �3�. We study the escape
laws in the Hénon-Heiles system �4,5� with the following
Hamiltonian:

H =
1

2
�px

2 + py
2� + U�x,y� ,

U�x,y� =
1

2
�x2 + y2� + x2y −

1

3
y3, �1�

where x and y are the coordinates and px and py are the
momenta. The mass of the particle is set to one for conve-
nience. This system exhibits both regular motion and chaotic
motion depending on the energy of the system, and it has
been studied from statistical, semiclassical and other per-
spectives �6–10�. Recently Brack et al. have calculated the
density of states above threshold �11�. The escape laws have
not been addressed so far.

Numerical studies show the motion of Hénon-Heiles sys-
tem is regular for E�1/12. When E is greater than 1/12, the
fraction of chaotic region in phase space increases with in-
creasing energy until E=1/6 the whole phase space is cha-
otic. Eth=1/6 is the threshold energy of this system. When
E�Eth, a particle in the potential well can escape. Figure 1
shows the contours of the potential U�x ,y�. There are three
saddle points P1�x=0,y=1�, P2�−�3/2 ,−1/2�, and
P3��3/2 ,−1/2�. All contours with energy less than 1/6 are

closed. A particle with energy less than 1/6 always moves
inside the closed contour and it remains in the well. The
contour with E=1/6 is the equilateral triangle P1P2P3. The
contours with energies larger than 1/6 are not closed. There
are three openings at the three saddle points. A particle with
energy above 1/6 can escape from the well via the three
openings. Because this system is chaotic above threshold, we
expect that the escape in the Hénon-Heiles system should
also follow an exponential law. Assuming N�0� random par-
ticles with the same energy in the Hénon-Heiles well at t
=0, the number of particles at t should be

N�t� = N�0�exp�− �t� , �2�

where � is an energy dependent decay rate. The purpose of
this article is to verify Eq. �2� and to estimate � for different
energies.

II. AN ESCAPE RATE FORMULA

We can derive a formula for the escape rate as a function
of energy above threshold by assuming ergodicity in the
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FIG. 1. Equipotential lines of the function U�x ,y� in Eq. �1�.
The points P1, P2, and P3 are saddle points.
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Hénon-Heiles system above threshold. We draw a line per-
pendicular to the escape direction through each saddle point,
they are lines A1B1, A2B2, and A3B3 in Fig. 1. For any energy
E above threshold, we define the potential well of the Hénon-
Heiles system to be the region restricted by the three discon-
nected contour lines and the three straight lines A1B1, A2B2,
and A3B3. The motion in the well is assumed to be ergodic.
For a given energy E, the phase space distribution is

��q , p�=
�(E−H�q,p�)

�dqdp�(E−H�q,p�) �5�, where q , p are the coordinates

and momenta. For our two-dimensional system, it is easy to
work out the results: the distribution in �x ,y� is uniform in-
side the well, and once the particle’s position is given, the
magnitude of the momentum is fixed by the Hamiltonian in
Eq. �1� and the direction of the momentum is uniformly dis-
tributed in �0,2��. We define the energy above threshold by
�E=E−Eth. We use 	 to represent the direction of momen-
tum relative to the y axis. We use S��E� to denote the area of
the well. Then the distribution in the variables �x ,y ,	� can be
expressed as 
�x ,y ,	�= 1

2�S��E� . Given N particles in the

well, the number of particles leaving the well through the
opening at the saddle point P1 in unit time can be written as
N�dx�−�/2

�/2 d	
�x ,y ,	��v�x ,y��cos�	�, where the integral in x
is along the line A1B1 and is restricted to the classical al-
lowed part. We note the three openings of the system are
symmetric. Therefore the number of particles leaving the
well in unit time from three openings are just three times of
the above result. The change of N with respect to t is

dN�t�
dt

= − 3N�t�
�
−�/2

�/2

cos�	�d	�
−�2�E/3

�2�E/3
�2��E − 3x2/2�dx

�3�

=− 2��3�E
N�t� , �4�

which gives the escape rate ���E�=
�3�E
S��E� .

There is no analytical formula for the area of the well
S��E�. We have applied Monte Carlo method to calculate the
area as a function of �E. The numerical results are repre-
sented by dots in Fig. 2. We found the numerical results can
be represented very well by the quadratic polynomial

S��E� = S0 + S1�E + S2��E�2, �5�

where S0= 3�3
4 is the area of equilateral triangle P1P2P3. By

fitting Eq. �5� to the numerical results in Fig. 2 using least
squares, we have determined the values for the other two
coefficients S1=9.656 and S2=−22.61. The line in Fig. 2 is
the fitted quadratic polynomial. We finally have the formula
for the escape rate in the Hénon-Heiles system

���E� =
�3�E

S0 + S1�E + S2��E�2 . �6�

Very close to the threshold, a power expansion of Eq. �6�
may be useful. Define

���E� = 	
1

�

Bi�Ei. �7�

The coefficients Bi can be expressed in S0, S1, and S2. They

are B1=
�3
S0

, B2=−
�3S1

S0
2 , and others can be obtained from the

following iteration formula Bi=−
S1Bi−1+S2Bi−2

S0
, i=3,4 , . . .. The

numerical values for the first four coefficients in the power
expansion of Eq. �6� are B1=4/3 ,B2=−9.9115,B3=96.8743,
and B4=−892.547. Keeping only the first term in the power
expansion close to threshold, we obtain ���E�= 4

3�E. The
escape rate therefore increases linearly with the energy of the
system near threshold. In contrast, the escaping rate for cha-
otic billiards with artificial windows depends on the square
root of energy as shown by Bauer and Bertsch �1�.

III. NUMERICAL SIMULATIONS OF ESCAPE

We now verify the exponential decay law in Eq. �2� and
the escape rate formula in Eq. �6� using numerical simula-
tions. In our numerical simulations of the escape process, we
follow the positions of a large number of particles in time.
The number of particles N�t� remaining in the potential well
as a function of time is monitored and used to extract the
escape rate. For any energy above threshold, we initially
place N�0� particles in the well according to the distribution

�x ,y ,	�= 1

2�S��E� . This distribution sets the initial conditions

for the particles. The trajectory of each particle is then fol-
lowed by numerically solving the Hamilton’s equations. We
used two algorithms to integrate Hamilton’s equation.
Runge-Kutta-Fehlberg �RKF� is the first algorithm �12�. In
this algorithm the error in each step can be controlled by
setting the relative tolerance and the absolute tolerance. In all
our calculations, we set the absolute tolerance to 10−9. The
second algorithm �CC� was proposed recently by Chin and
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FIG. 2. The area of the well �region bounded by the three dis-
connected contour lines and the three straight lines A1B1, A2B2, and
A3B3� as a function of energy above threshold �E. The dots are
results calculated using Monte Carlo method. The solid line is the
fitted quadratic polynomial in Eq. �5�.
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Chen �13�, it is a fourth order forward symplectic algorithm.
It is generally believed that symplectic algorithms are better
and can follow the true dynamics longer because they pre-
serve the symplectic structures of Hamilton’s equation. The
explicit algorithm for advancing the system forward from t to
t+� is

p1 = p�i� +
1

6
�F„q�i�… ,

q1 = q�i� +
1

2
�p1,

p2 = p1 +
4

6
�F̃�q1� ,

q�i + 1� = q1 +
1

2
�p2,

p�i + 1� = p2 +
1

6
�F„q�i + 1�… . �8�

Note F=−�U and F̃=F+ 1
48�2� ��F�2� includes an correction

to the original force. The time step size � can be varied to
control integration errors.

In Fig. 3 we show the two trajectories calculated using the
two algorithms. The two trajectories start from the same ini-
tial condition: the position is at �x=0, y=0.16�, the energy is
E=0.18, and the direction of momentum is in the positive x

axis. Figure 3�a� is the trajectory obtained using RKF algo-
rithm with relative tolerance 10−8. Figure 3�b� is the trajec-
tory obtained using CC method with a time step size �
=0.04. We have verified the accuracy of both calculations.
When the time step size and relative tolerance were reduced
further, the trajectories did not show noticeable change. Fig-
ures 3�a� and 3�b� show clearly the two trajectories obtained
using the two algorithms stay close for some time and then
separate. In Fig. 3�a�, the particle escapes at t=299, while in
Fig. 3�b�, the particle escapes at t=172. The increased sepa-
ration of the two trajectories calculated with two different
algorithms starting with the same initial condition reflects the
difficulty to follow chaotic motions for a long time. Never-
theless we can still extract accurate escape rates as shown
below.

A large number of particles are used in the simulations of
escape process. For example, we initially put N�0�=15326
particles with the energy �E=0.0234 above threshold ac-
cording to 
�x ,y ,	�= 1

2�S��E� in the well. We advanced this

system by following the trajectory of each particle using
RKF method with relative tolerance 10−8. We recorded the
number of particles N�ti� remaining in the well in time step
�t=0.628. Figure 4�a� shows N�t� as a function of time in
log-linear scale. Figures 4�b�–4�d� show similar results for
different energies. We found the curves in Fig. 4 in all the
cases are almost straight lines. The escape of Hénon-Heiles
system therefore follows approximately exponential laws.
For each energy, we can extract the escape rate from the
simulated N�t�. We used the simulated N�t� from time t=0 to
a time when ten percent of the particles have escaped and
fitted it to ln N�t�=c−�t using least squares. The fitted pa-
rameter � is the extracted escape rate at the corresponding
energy.

We compare in Fig. 5 the extracted escape rates and the
analytic result in Eq. �6� as a function of energy above
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FIG. 3. Examples of trajectories calculated from the two algo-
rithms in the Hénon-Heiles system. Both trajectories start from the
position �x=0, y=0.16� with energy E=0.18, the initial direction of
momentum points to the positive x axis. �a� RKF method �12� with
relative tolerance 10−8 and time range �0–299�. �b� CC method of
Chin and Chen �13� with step 0.04 and time range �0–172�.
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FIG. 4. The number of particles in the well as a function of time
for four energies above threshold. �a� �E=0.0234, N�t=0�
=15 326, �b� �E=0.0534, N�t=0�=17392, �c� �E=0.0734, N�t
=0�=18 885, �d� �E=0.0934, N�t=0�=19 942. The dots are nu-
merical results obtained using RKF method �12� with a relative
tolerance 10−8.
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threshold. The solid line is from the formula in Eq. �6�. The
circles are the numerical results from RKF method with a
relative tolerance 10−8, the diamonds are the numerical re-

sults obtained from CC method �13� with time step 0.04. The
numerical results from the two algorithms agree well. We
verified the accuracy of simulations by using smaller toler-
ance and smaller step size, and we found that the numerical
results did not change. The numerically extracted rate in Fig.
5 can be described quite well by the scaling law ���E�
= 4

3�E, which is shown as the dashed lines. The dotted line
shows the power expansion of Eq. �6� with the first four
terms. An improved agreement is achieved by the expansion.

IV. CONCLUSIONS

We have derived a formula in Eq. �6� for the escape rate
of the Hénon-Heiles system. We also simulated the escape
process by following a large number of trajectories. We used
a symplectic algorithm and a nonsymplectic algorithm to ad-
vance each particle’s trajectory in time. The numerically ex-
tracted escape rates using the two algorithms agree with each
other, and they also agree with the analytic formula for
Hénon-Heiles system in Eq. �6�.

Close to threshold, we found the rate scales linearly with
the energy of the system above threshold �E and can be
written as ���E�= 4

3�E. The linear dependence for Hénon-
Heiles system differs from the ��E�1/2 dependence for cha-
otic billiards with artificial windows �1�. The derivation for
the escape rate in Eq. �6� suggests that the linear scaling of
escape rate should also apply to other two-dimensional cha-
otic systems with smooth openings.
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FIG. 5. The escape rate � as a function of energy above thresh-
old for the Hé non-Heiles system. �E is the energy of the system
above threshold. The solid line is the formula in Eq. �6�. The circles
are the numerical results from RKF method �12� with a relative
tolerance 10−8, and the diamonds are the numerical results obtained
from CC method �13� with a time step 0.04. The dashed lines are
the threshold scaling law ���E�= 4

3�E. The dotted line is the power
expansion of Eq. �7� with the first four terms only.
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